September 18, 2012

Alpensee Water District Director Mr. Don Skotty PO Box 2204 Frisco, CO 80443

Dear Don,

Based on our earlier discussions at Alpensee Water District (AWD) meetings for technical support I accepted your design basis and drawings for AWD on September 17, 2012. These records consist of one 8" stack of files (not collated) and one 50 gallon garbage bag full of drawings, with no master list.

I have done a casual survey of the information. I now find that there is enough confusion to require my formalizing our communications and working relationship. I am making AWD the same offer for my skills that I provide for the US Government, US Military, and US Intelligence agencies. My services are free subject to the following requirements: The AWD shall pay for all out of pocket expenses. All out of pocket expenses will be defined and approved before expenditure by AWD board of Directors. The AWD will indemnify and hold harmless myself (David Flanigan) and my Company, David Flanigan, Ltd. The agreement must be confirmed in writing and is subject to approval by my Boss, who is a Director of AWD, C.J. Winkle. A conclusions and findings are subject to review.

The AWD and its directors are covered by insurance and other elements that protect the Directors from litigations based on the decisions they must make. I require the same protection because the Developer and Former Board member Laurence (Larry) A. Smith was the approver of most of the Development work. I am still working full time and the work completion is subject to my free time available. My free time and ability to earn an income could be severely limited by litigation, be it nuisance or not.

All analysis and information that I provide will be subject to secondary review; which should be done by the AWD Board of Directors or whom the Board deems qualified. Most of the problems and issues AWD faces are the result of lack of adequate review during the process of developing the AWD. The documentation you provided has uncovered several problem issues so far. But, the documentation provided is far from complete. My **first recommendation** is that you ask the previous AWD board members, the previous AWD Operator, and AWD Developer; including General Contractor, Engineering firm and County or State Officials involved for records which may clarify changes made to the AWD from approved design basis to the system you have now.

The <u>second recommendation</u> I have is that you institute a change track and control system as soon as possible for AWD. Many of the issues you now face are the result change to the AWD operating system from the original design basis with hazard mitigation or economic cast review.

QUALIFICATIONS

David Flanigan received a BS (81), MS (83), and PhD (86) from the Colorado School of Mines in Chemical Engineering. The work experience will be condensed to items concerning the tasks required by AWD. 1978-1981 US Geological Survey, Ground Water Hydrologist. 1984-1994 Conoco/DuPont R&D+Technical Service. 1986-1990 Senior Research Engineer, developed process systems for offshore/onshore drilling and production of Oil and Gas. This includes fire mitigation, hazard analysis, and systems analysis for North Sea, Alaska, and US domestic Operations. 1990-1994 Senior Research Supervisor built and operated initial plants for Freon replacements HFC-134a and HFC-32. Process design, hazard reviews and fire mitigation analysis for these 20million USD facilities. 1994-2004 Consultant for the DuPont Company: More than 100 process designs and hazards reviews from pilot to commercial plant which included fire mitigation and risk assessment. 1994-Current Principal Engineer for David Flanigan, Ltd.: Provided process design and hazard assessment mitigation design for Clariant, DuPont and Nuclear Fuels Services. 2003-2006 Cochairman of the Board for Fuxin HengTong Fluorine Chemicals Ltd. (FHT): Process Design, Hazard Analysis. Project Engineer for construction. 2006-Current Technical Director for Tianhe Group: FHT merged with Tianhe: Design, Build, and construct Tianhe Company plants which manufacture chemicals using processes with conditions that are immediately dangerous to life and health producing Fluoro-chemicals and polymers. Designs also include fire mitigation, fire suppression, domestic or potable water systems.

CONFLICTS OF INTEREST

I have certain conflicts of interest that should be understood before reading any report I might make to the AWD. I am customer of the AWD, and as such I live in the district where fire mitigation is dependent on the AWD. My wife, C.J. Winkle is member of the Board of Directors of the AWD.

INITIAL REPORT FINDINGS

Please remember my findings here are subject to change based on complete review of all the information provided. I find it necessary to make this report so that the AWD Board of Directors can begin to assess the needs for the AWD and the current risks for the AWD and its customers.

50 GALLON GARBAGE BAG OF DRAWINGS

WORK DONE TO DATE

- 1. Sort the drawings into two piles:
 - A. AWD system drawings. So far I have found no Process and Instrument (P&ID) drawing certified or signed to indicate an as built state. Out-lot A is lot in Highland Meadows which is given easement from lots 22 and 23 for the purpose of water storage and distribution for the AWD. But this lot is not owned or maintained by the AWD. In the most recent AWD meeting, September 17, 2012, the public was told that Lot A belongs to the former Developer and AWD Board member Larry Smith and other Smith family members. But lot A was not on the list of customers of AWD, though Lot A receives fire mitigation from AWD. Lot A was surveyed and photographed. Elevations were also taken. This work was done to provide data to see if Lot A could be used in Lot A's original intent or some other support capacity. Please find **Figure 1**; *As built for 2 of 2 sewer HM draw*, the only "As Built" PUD distribution drawing found so far.
 - B. All others; which are mostly the project drawings for homes in the Highland Meadows PUD. Early project plans are minimal. The plans become more detailed and substantial as they become more current. The AWD was informed by phone via director Skotty of the PUD house project drawings. Director Skotty and the AWD Board will determine what to do with the drawings.
- 2. Looked for drawing to determine what is in Highland Meadows PUD. **Figure 2**, **HM PUD 1 of 2 for 14 lots W of HS** shows 14 more lots in the original Highland Meadows PUD submission for AWD.
- 3. Found a drawing to locate Lot A accurately and did a survey for initial determination of use. Please tell me if I should proceed with any options using Lot A, since AWD or the HM PUD do not control its use currently.

WORK NEEDED

- 1. Determine a method to scan or photograph the drawings that can provide the detail required for review.
- 2. Catalog all drawings in a worksheet or data base. The AWD board will advise me on which are to be electronically stored.
- 3. At this time I assume all E4 drawings related to the AWD treatment and distribution system will be scanned as soon as the method is finalized.
- 4. The AWD board will inform me where to deliver the drawings once they are available electronically.

8" STACK OF FILES

The files are in used file folders with no descriptions or collation. I needed somewhere to start so briefly scanned through all the files visually. There are some things I think the AWD Board needs to know at this time.

- November 26, 2001 hydrant flow test report from Martin/Martin Consulting Engineers (MM). I pulled this report and randomly checked it for accuracy. See Figure 3, 20011126 MM flow hydrant flow test.
 - A. I found a hydrant listed as Lot 23 which was tested. But there is no hydrant on lot 23. There is a hydrant across the road on lot 19 or 20. I am not sure which lot it is on because the hydrants are not marked on as built or other drawing reviewed. The drawing key shows the symbols, but the locations are not marked. I could not easily find a survey marker. I need to get a Segment Length (SL) from a plat drawing as pace it out to find the lot location for the hydrant. So if there was an error in hydrant location in randomly picked test, then how much confidence should I have in the rest of the data?
 - B. The test flows on the hydrant show low flow at the highest hydrant, lot 27, 1250GPM, elevation 9310ft. The highest flow is at "Lot 1,2" hydrant, 1790GPM, elevation 9120ft.
 - C. The elevations are from the MM test report. There are no values on the drawings from Range West that have been reviewed.
 - D. If the Lot 27 hydrant passed, then the flow was determined to be enough. Since the test required 2 @655GPM and 2@165GPM pumps the low figure must be somewhere near the required flow. Total name plate flow is 1640GPM. How do we explain the test flow of 1790GPM at Lot 1, 2 hydrant; 10% higher than name plate? I know gravity could be possibly lower at this altitude depending on the density of the earth in this local area. If the measurement is biased 10% at the low elevation, then the flow at hydrant lot 17 may only be 1125GPM. So is 1125GPM enough for the system criteria? This report is signed by a Professional Engineer with no basic system check?
 - E. A secluded single home fire with an adequate fire hydrant out front is considered to be a 3 hour event. So 3x60x1250=225,000 gallons are required to fight the fire. The storage vault is reported as 275,000 gallons. The tank must be kept 82% full to have enough water to fight a potential fire. The well production rate should be checked.
- The Farmer's Korner Water District Design basis is in Figure 4, <u>Farmers Korner Water</u>
 <u>Use Assumptions</u>. This is not for designing a water distribution system. This is for water rights assignment. No dynamic or peak rate is estimated.
- 3. Well #1 and Well #2, also known as wells 52910-F and 52911-F respectively. Court Case numbers 93CW241 (A) and 98CW296. Both wells have the same court case references. The wells are limited to 100gpm and 20.66 annual acre-ft for production of water. The permits are not in the name of AWD. The permits are assigned to Farmers Korner Inc. C/O Bishop-Brogden Assoc. Inc. So it appears that AWD may not even have a permit to get water from the wells. However, the water is assigned to "Domestic use in Highland Meadows Subdivision & Alpensee 3 Subdivision". Permit dates are 5/31/2001. So total raw water production is limited to 200GPM, provided the wells produce this much. You cannot therefore, mitigate a fire using the production from the wells. Typically a pond is made to hold water for fire fighting. But, a pond freezes in the winter. So the 275,000gallon vault is the under-ground fire water pond or supply. Again the level cannot drop below that

required for a fire mitigation incident. Therefore, the operation where the level in the tank was taken down put the AWD at risk. The operator of the distribution system needs to be given a minimum reserve level for fire mitigation. The level in the vault cannot drop below the minimum without fire watch or special precautions.

- 4. Well test reports are for MH-25403 in April 15, 1995 by the Office of State Engineer. 6.5" casing 38ft deep. Test rate was 50GPM. MH-35971 was tested by the Samuelson Pump Co. on July 14, 1999. The casing was 10". The depth was 50'. Standing water depth 8'9" draw down to 24' 9" in 20 minutes at >200GPM test flow. Apparently they do not know the production test is done at steady level to see the well production limit. How these wells are related to the ones AWD uses is not known. So I have no sense of the ability for AWD to produce water. But, we know AWD is limited to 200GPM production per day. **Figure 5** is *Well drill and reports, 7/14/1999*.
- **5.** The system summary for insurance was generated on July 12, 2001. The equipment is valued at 700,000USD as is indicated in

6.

- 7. Figure 6, *Equipment value/system stats letter*, 6/12/2001.
- 8. Water right applications started in June 1992. Refer to **Figure 7**, **19920621 water rights start**.
- 9. The hydrant count for the AWD is in **Figure 8**, *Hydrant count 8/4/2004*. This is a hand written memo to Matt. Matt's name, address, and function are not known. All of the AWD hydrants were not tested. Only those in the above test report from MM are confirmed as functional. The district has been operating for some time now. So a flow test is not necessarily required, but the hydrants should have been tested for operation at some time during the past 11 years. I recommend the AWD board put this as an action item for future work. If water is needed in the district, then you might want to take it from different hydrants to make sure all the hydrants function. Please also note there 18 hydrants in the district. One hydrant services the Mobile Home Park and High School. So the AWD has been providing mitigation for the High School and Mobile Home Park at no cost? I did not see these properties on the AWD customer list at the AWD meeting.
- 10. A copy of the New Water System Capacity Planning Manual is in the file. This document is more than 60 pages. The cover page, County Health Contact, and Approval Flow chart are in **Figure 9**, *Cover of Capacity Plan Manual no date*. The manual says you can get a copy of the Design Criteria for a potable water system by calling 303-692-3500. The manual has no revision date. However, forms in the manual are dated 12/97. A copy of the design Criteria for Potable Water Systems is in the file, dated March 1997. The Design Criteria costs \$5 USD and has more than 100 pages. I recommend someone from AWD call and see if the Design Criteria has changed and get copy of the updated Design Criteria if available. There are regulations as to what labs can be used and they are found in Article 1.2.3(8). I assume this the Colorado Code. These documents will get scanned when time is available.

LOT A SURVEY

I did a survey of Lot A by finding the segment lengths of Lot 23 and Lot A. I walked a known section where Lot 23 makers were still up. The calibrate step on un-even ground was 2.27ft/step. This led me to the survey markers put up a long time ago at the southern edge of Lot A. Picture of the Lot A lot lines were taken and sent to the AWD Board. The building envelope of Lot 23 appears to have been moved or changed from plot drawings. The survey notes are in **Figure 10**, **20120918 Lot A survey notes**. Elevations where measured using the I-Phone App Trekkers Altimeter.

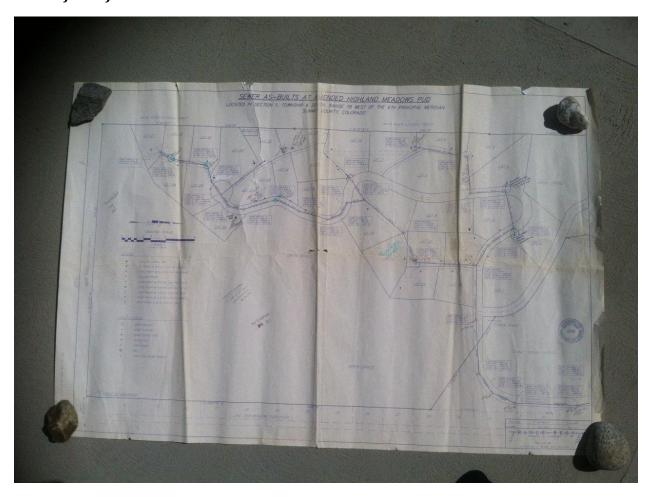
Point Description	Мар	GPS	Reference	Reference
	Based	Based	based Elev	
	Elev ft	Elev ft	ft.	
Lot 22 House Main Floor	9307	9321	9301	Range West Survey Lot 22
Lots 22/23 west corner	9331	9331		
Lot A NW corner	9344	9337		
Lot A NE corner	9324	9334		

Lot A SE corner	9305	9338		
Lot A SW corner	9343	9343		
Lot A center	9342	9342		
Hydrant lot 19/20	9213	9291	9286	MM hydrant test report
Hydrant Lot 17	9288	9286		-
Hydrant Lot 27	9295	9330	9310	MM hydrant test report

The GPS values appear to be within 20' or 0.2% error. A storage tank would then set at about 9342ft. The head pressure is given by density x gravity x height.

To service fire mitigation would then require 35 psig at the highest hydrant. This would be Lot 27 at 9330ft. 35 psig is about 76.2 ft of head. We need also to provide for friction losses. So we need about 100ft of head at normal gravity. The force of gravity varies as the distance to the center of the earth, but is also affected by the local density of the earth. This means we may have more height. The height difference at grade is currently 9342-9330=12ft. So we would have elevate the tank 100-12ft =88ft to the bottom of the tank. The local trees are 60-63 ft tall. If we want to provide fire mitigation, then a 30ft diameter tank would have to be 50ft tall to hold the water plus be elevated from the ground or grade by 88ft. So the water tank would be 88+50=138ft tall, surrounded by 60ft trees. Now we know why the design basis was changed to pump pressurized system.

OTHER OPTIONS


- 1. Lot A could have a small pressurized tank that would make sure the water system would not empty from normal use in the event of an electric outage. The tank would need to hold about 3000gallons/day x the average electrical outage. So we can estimate this saying the average electrical outage is no more than 4 hours. Then the tank needs to be >500gallons. However the highest lots will have very little pressure when the power is out; about 5 psig.
- 2. An underground tank the same size as the vault now under the pump house could be put in the National Forest on the Hill above HM-PUD. We had forest there before, but now all the trees are down. The tank could be buried with earth and trees covering the tank or vault. This is the most green-solution since potential energy would be stored and the AWD would be able to mitigate fire suppression with no harm to the environment. The system would be very reliable. The access to the AWD distribution system could be through Lot-A any other easement that could be negotiated. Can this be done politically?
- 3. Electrical generators proving emergency power for fire pumps could be installed at the pump house using LP, Diesel, or NG as fuel.
- 4. The fire pumps could be re-fit with LP, Diesel, of NG engines.
- 5. The best solution is the one with the least risk, lowest impact, and lowest costs long term. We just need to develop all the possible solutions and determine the impact and cost. To do this we need reliable data about the system that exists now, what will likely happen in the future, and will change in fire mitigation.

This concludes my initial report to the AWD Board. I hope this has been of some value.

David Flanigan

FIGURE 1

As built for 2 of 2 sewer HM draw

HM PUD 1 of 2 for 14 lots W of HS.

20011126 MM flow hydrant flow test

November 26, 2001

Farmer's Korner, Inc. P.O. Box 1005 Frisco, Colorado 80443 Attn: Mr. Larry Smith

Re: Farmer's Komer Water System

Dear Mr. Smith:

The estimated pressure and flow provided by the water pumping system to the fire hydrants is as follows:

20120918 - DAF
No Hydrant confot 23.
Should be Lot M 20

Location	Elevation(1)	Estimated Available Emergency Flow, gpm ⁽²⁾⁽³⁾
Lots 1,2	9120	1790
Lots 9,10	9164	1700
Lot 16	9278	1420
Lot 23	9286	1400
Lots 24.25	9273	1420
Lot 27	9310	1250

Notes:

- (1) Elevation data provided by Pearson Engineering, Inc.
- (2) Emergency Flow = Total estimated flow estimated peak day flow.
- (3) Available flow based on pump data submitted by Janssen/Samuelson for proposed pumps. Two (2) large pumps (655 gpm) and two (2) medium pumps (165 gpm) running.

Pressure and flow vary relative to the elevation of the lot or fire hydrant to be served. In addition, maximum available flow is dependent on the number of fire hydrants in the vicinity of the structure and the maximum flow that can be withdrawn from the hydrant.

Sincerely,

Patsy Sulli-

Patsy J. Sullivan, P.E. Project Engineer

e: Gary Green, Red. White & Blue Fire Protection District

PJS.njt

4151 KIPLINS . P.O. BOX 4001 . WHEAT RIDGE, COLORADO BOD34 . 303.431.6100

Farmers Korner Water Use Assumptions

FARMERS KORNER DEVELOPMENT WATER USE ASSUMPTIONS

INSIDE USES

Indoor Residential Uses:

Highland Meadows: 3.5 persons per unit
Alpensee 3: 2 persons per unit
Henriksen: 3.5 persons
All: 100 gpcd

Indoor Commercial Uses: 0.175 gal/sq ft/day

OUTSIDE USES

Irrigated Acreage:

Highland Meadows: 3,000 sq ft/unit start-up with 2.07 acre limit incl. common areas

1,000 sq ft/unit permanent

Alpensee 3: 1.14 acres Henriksen: 1.6 acres

Irrigation Requirement:

Farmers Korner: 5 inches per year Henriksen: 1.45 ac-ft/ac/yr

Stockwatering: 12 gal/head/day

10 horse limit

Miscellaneous Outside Uses: 200 gals/unit/month (800 gals/yr/unit)

EVAPORATION RATES (NET)

Rate (af/ac) Month Rate (af/ac) Month 0 Jul 0.25 Jan Feb 0.18 0 Aug 0.18 0.04 Sep Mar 0.11 0.11 Oct Apr 0.01 May 0.2 Nov 0 Jun 0.3 Dec 1.38 Total

Commercial
Commercial Revidential
Demand Commercial Residential Ct Demand Ct Demand Ct Demand Ct
Commercial Residential R
0.416
0.403 0.020 0.147 0.007 0 0 0.550 0.028 0.550 0.416 0.021 0.152 0.008 0.120 0.120 0.688 0.148 0.924 0.416 0.021 0.152 0.008 0.120 0.120 0.688 0.148 0.924 0.416 0.021 0.152 0.008 0.120 0.120 0.688 0.148 0.924 0.403 0.020 0.147 0.007 0 0 0.568 0.028 0.550 0.404 0.021 0.152 0.008 0.120 0.120 0.588 0.148 0.924 0.405 0.021 0.147 0.007 0 0 0.568 0.028 0.558 0.406 0.021 0.152 0.008 0.480 0.480 0.113 0.815 8.114 Permanent Irrigation Scenario Commercial Residential Frigation CU Demand
0.416 0.021 0.152 0.008 0.120 0.120 0.688 0.148 0.924 0.403 0.020 0.147 0.007 0.120 0.688 0.148 0.924 0.416 0.021 0.152 0.008 0.120 0.688 0.148 0.924 0.415 0.021 0.152 0.008 0.120 0.120 0.688 0.148 0.924 0.403 0.020 0.147 0.007 0.120 0.588 0.028 0.550 0.403 0.020 0.147 0.007 0.0 0.568 0.028 0.550 0.404 0.021 0.152 0.008 0.0 0.568 0.028 0.558 0.405 0.021 0.152 0.008 0.480 0.173 0.815 8.114 Permanent Irrigation Scenarion
0.403 0.020 0.147 0.0077 0.120 0.670 0.148 0.905 0.405 0.021 0.152 0.008 0.120 0.120 0.688 0.148 0.924 0.405 0.021 0.152 0.008 0.120 0.120 0.688 0.148 0.924 0.405 0.021 0.152 0.007 0.0 0.0 0.568 0.028 0.550 0.405 0.021 0.152 0.007 0.0 0.568 0.028 0.556 0.405 0.021 0.152 0.008 0.4 0 0.568 0.028 0.556 0.416 0.021 0.152 0.008 0.480 7.173 0.815 8.114 Phase II Tamanent Irrigation Screaning
Outlook Outl
October Octo
Outside Outs
O-401 O-020 O-147 O-007 O O-550 O-250 O-550
Commercial Permanent frigation Scenario Permanent Permanent frigation Scenario Permanent Permanent frigation Permanent P
Permanent Irrigation Scenario Permanent Irrigation Scenario Alpenset 3 1792 0.090 0.480 7.173 0.815 8.114
Permanent Irrigation Scenario Alpenset 3
cs. Demand CU Demand CU Demand CU Phase IIT 6416 0.021 0.132 0.008 0 0.558 0.025 0.558 6416 0.021 0.137 0.008 0 0 0.553 0.025 0.558 0.416 0.021 0.137 0.008 0 0 0.553 0.025 0.558 0.416 0.021 0.152 0.008 0 0 0.568 0.028 0.558 0.403 0.021 0.152 0.008 0.120 0.120 0.659 0.028 0.558 0.416 0.021 0.152 0.008 0.120 0.120 0.659 0.028 0.550 0.416 0.021 0.122 0.059 0.059 0.048 0.780 0.416 0.021 0.122 0.050 0.050 0.048 0.780 0.416 0.021 0.127 0.020 0.050 0.048 0.780 0.416 0.021
Demand CU Demand CU <t< th=""></t<>
0.416 0.021 0.152 0.008 0 0 0.568 0.025 0.568 0.376 0.019 0.137 0.007 0 0 0.513 0.025 0.513 0.416 0.021 0.157 0.007 0 0 0.543 0.025 0.513 0.416 0.021 0.152 0.007 0 0 0.543 0.028 0.550 0.416 0.021 0.127 0.007 0 0 0.593 0.148 0.780 0.416 0.021 0.127 0.008 0.120 0.120 0.688 0.148 0.780 0.416 0.021 0.120 0.120 0.688 0.148 0.780 0.416 0.021 0.127 0.120 0.688 0.148 0.780 0.416 0.021 0.127 0.020 0.056 0.056 0.056 0.416 0.021 0.147 0.007 0 0.566 0.028 0.550
6,576 G,019 0.137 0.007 0 0 0.513 0.026 0.513 0,416 0.021 0.152 0.008 0 0 0.568 0.028 0.568 0,403 0.021 0.147 0.008 0.120 0.120 0.028 0.550 0,403 0.020 0.147 0.008 0.120 0.120 0.670 0.148 0.780 0,416 0.021 0.152 0.008 0.120 0.120 0.670 0.148 0.780 0,416 0.021 0.152 0.008 0.120 0.120 0.670 0.148 0.780 0,416 0.021 0.152 0.008 0.120 0.120 0.678 0.780 0,416 0.021 0.147 0.008 0.120 0.148 0.780 0,416 0.021 0.147 0.008 0 0 0.589 0.148 0.780 0,416 0.021 0.122 0.008 0
0.416 0.021 0.152 0.008 0 0 0.568 0.028 0.568 0.483 0.020 0.147 0.007 0.170 0.190 0.659 0.028 0.550 0.481 0.021 0.152 0.008 0.120 0.120 0.688 0.148 0.782 0.416 0.021 0.147 0.007 0.120 0.120 0.688 0.148 0.782 0.416 0.021 0.152 0.008 0.120 0.120 0.688 0.148 0.780 0.416 0.021 0.147 0.008 0.120 0.120 0.688 0.148 0.780 0.416 0.021 0.147 0.008 0.120 0.120 0.688 0.148 0.780 0.416 0.021 0.147 0.008 0 0 0.586 0.028 0.568 0.416 0.021 0.147 0.007 0 0 0.586 0.028 0.568 0.416
0.4893 0.020 0.147 0.007 0 0 0.550 0.028 0.550 0.416 0.021 0.152 0.008 0.120 0.120 0.688 0.148 0.780 0.416 0.021 0.152 0.008 0.120 0.120 0.688 0.148 0.780 0.416 0.021 0.152 0.008 0.120 0.120 0.688 0.148 0.780 0.416 0.021 0.147 0.008 0 0 0.550 0.028 0.550 0.416 0.021 0.147 0.007 0 0 0.550 0.028 0.550 0.416 0.021 0.147 0.007 0 0 0.550 0.028 0.550 0.416 0.021 0.152 0.008 0 0 0.550 0.028 0.550 0.416 0.021 0.147 0.007 0 0 0.550 0.028 0.550 0.416 0.021
0.416 0.021 0.152 0.008 0.120 0.120 0.688 0.148 0.780 0.403 0.020 0.147 0.007 0.120 0.120 0.670 0.148 0.782 0.416 0.021 0.152 0.008 0.120 0.670 0.148 0.782 0.416 0.021 0.152 0.008 0.120 0.120 0.688 0.148 0.782 0.403 0.020 0.120 0.120 0.688 0.148 0.780 0.416 0.021 0.147 0.007 0 0 0.550 0.256 0.416 0.021 0.152 0.008 0 0 0.568 0.568 0.416 0.021 0.147 0.007 0 0 0.568 0.028 0.568 0.416 0.021 0.147 0.007 0 0 0.568 0.028 0.568 0.416 0.021 0.147 0.007 0 0 0.568<
0.403 0.020 0.147 0.007 0.120 0.120 0.670 0.148 0.762 0.416 0.021 0.152 0.008 0.120 0.120 0.688 0.148 0.780 0.480 0.480 0.780 0.403 0.020 0.147 0.0078 0.120 0.120 0.688 0.148 0.780 0.403 0.020 0.147 0.0078 0.120 0.120 0.688 0.148 0.780 0.480 0.416 0.021 0.142 0.008 0.0 0.0 0.468 0.028 0.568 0.448 0.448 0.446 0.021 0.142 0.009 0.0 0.468 0.028 0.568 0.448 0.446 0.021 0.147 0.007 0.0 0.0 0.550 0.028 0.568 0.446 0.021 0.147 0.007 0.0 0.0 0.550 0.028 0.568 0.448
0.416 0.021 0.152 0.008 0.120 0.120 0.688 0.148 0.780 0.416 0.021 0.152 0.008 0.120 0.120 0.688 0.148 0.780 0.403 0.020 0.147 0.008 0 0 0.056 0.028 0.550 0.403 0.020 0.147 0.007 0 0 0.550 0.028 0.568 0.403 0.020 0.147 0.007 0 0 0.550 0.028 0.568 0.416 0.021 0.147 0.007 0 0 0.550 0.028 0.550 0.416 0.021 0.122 0.008 0 0 0.058 0.028 0.568 0.416 0.021 0.026 0.026 0.026 0.028 0.028 0.568 0.416 0.024 0.026 0.026 0.026 0.026 0.026 0.026
0.416 0.021 0.152 0.008 0.120 0.120 0.688 0.148 0.780 0.000 0.010 0.0147 0.007 0 0 0.036 0.028 0.550 0.046 0.021 0.147 0.007 0 0 0.056 0.028 0.056 0.028 0.056 0.028 0.056 0.028 0.056 0.028 0.056 0.028 0.056 0.0
0.403 0.020 0.147 0.007 0 0 0.550 0.028 0.550 0.028 0.550 0.0410 0.051 0.152 0.008 0 0 0.568 0.028 0.568 0.058 0.0
0.416 0.021 0.152 0.008 0 0 0.568 0.028 0.568 0.540 0.
0.403 0.020 0.147 0.007 0 0 0.550 0.028 0.550 0.466 0.028 0.550 0.466 0.465 0.465 0.466 0.
0.416 0.021 0.152 0.008 0 0 0.568 0.028 0.568 0.001 0.345 1.707 0.000 0.480 0.480 7.771 0.815 7.540
A 101 A 144 F 707 D 700 D 480 T 671 D 814 7 540
1100 C111 C111 C111 C110 C110 C110 C110

Farmer's Korner Summary of Average Pumping Requirements @ Buildout (All Values In Acre-Feet)

	Tempor	ary Irrigation	Period	
	Farn	ners Korner Well	s	Henriksen
Month	Phase I	Phase II	Total	Water Requirement
Jan	1.045	0.57	1.613	0.045
Feb	1.045	0.51	1.558	0.040
Mar	1.045	0.57	1.613	0.045
Apr	1.045	0.55	1.595	0.043
May	1.045	0.92	1.965	0.772
Jun	1.045	0.91	1.955	0.770
Jul	1.045	0.92	1.965	0.772
Aug	1.045	0.92	1.965	0.772
Sep	1.045	0.55	1.595	0.043
Oct	1.045	0.57	1.613	0.045
Nov	1.045	0.55	1.595	0.043
Dec	1.045	0.57	1.613	0.045
Totals:				
May-Aug	4.18	3.67	7.85	3.09
Sep-Apr	8.36	4.44	12.79	0.35
Annual	12.55	8.11	20.66	3.43

	Perm	nanent Conditi	ons	
		Phase II	COLUMN COLUMN	Henriksen
Month	Phase I	Phase II	Total	Water Requirement
Jan	1.045	0.57	1.615	0.045
Feb	1.045	0.51	1.555	0.040
Mar	1.045	0.57	1.615	0.045
Apr	1.045	0.55	1.595	0.043
May	1.045	0.78	1.825	0.772
Jun	1.045	0.76	1.805	0.770
Jul	1.045	0.78	1.825	0.772
Aug	1.045	0.78	1.825	0.772
Sep	1.045	0.55	1.595	0.043
Oct	1.045	0.57	1.615	0.045
Nov	1.045	0.55	1.595	0.043
Dec	1.045	0.57	1.615	0.045
Totals:				
May-Aug	4.18	3.10	7.28	3.09
Sep-Apr	8.36	4.44	12.80	0.35
Annual	12.55	7.54	20.09	3.43

	Heart Property P		
Harisde	Total		
Demand CL Demand CL Demand CL Demand CL Demand CL	Demand CU Demand CU Demand CU Demand CU		
Firstige	Decirate Pringation Sinck Total		Total (Including Henrika
Demand CU Dema	Demand CU Demand CU Demand CU Demand CU		Total Total
Decided Section	0.033	Depletions	
COURT COUR	Demand Cut Dema	0.028	
0.022 0.003 0.727 0.582 0.011 0.011 0.772 0.596 0.924 0.384 0.023 0.003 0.727 0.582 0.011 0.011 0.772 0.596 0.924 0.384 0.033 0.003 0.727 0.582 0.011 0.011 0.772 0.596 0.924 0.384 0.033 0.003 0.727 0.582 0.011 0.011 0.772 0.596 0.924 0.384 0.033 0.003 0.727 0.582 0.011 0.011 0.772 0.596 0.924 0.384 0.033 0.003 0.727 0.582 0.011 0.011 0.772 0.596 0.924 0.384 0.033 0.003 0.727 0.582 0.011 0.011 0.012 0.772 0.596 0.924 0.384 0.033 0.003 0.727 0.582 0.011 0.011 0.012 0.043 0.014 0.586 0.924 0.384 0.033 0.003	0.032 0.003 0 0 0 0.011 0.011 0.043 0.014 0.032 0.003 0 0.032 0.001 0.727 0.582 0.011 0.011 0.772 0.596 0.033 0.003 0.727 0.582 0.011 0.011 0.772 0.596 0.033 0.003 0.727 0.582 0.011 0.011 0.772 0.596 0.033 0.003 0.727 0.582 0.011 0.011 0.772 0.596 0.032 0.003 0.727 0.582 0.011 0.011 0.072 0.596 0.033 0.003 0.727 0.582 0.011 0.011 0.043 0.013 0.014 0.032 0.003 0 0 0 0.011 0.011 0.043 0.014 0.033 0.003 0 0 0 0.011 0.011 0.043 0.014 0.032 0.003 0 0 0 0.011 0.011 0.011 0.043 0.014 0.032 0.033 0.003 0 0 0 0.011 0.011 0.011 0.043 0.013 0.033 0.003 0 0 0 0.011 0.011 0.011 0.043 0.013 0.033 0.003 0 0 0 0.011 0.011 0.043 0.013 0.033 0.003 0.003 0 0 0 0.011 0.011 0.043 0.013 0.033 0.003 0.033 0.003 0.033 0.031 0.03	0.028	
0.033 0.003 0.727 0.582 0.011 0.011 0.772 0.596 0.924 0.384 0.032 0.033 0.003 0.727 0.582 0.011 0.011 0.770 0.596 0.993 0.383 0.033 0.003 0.727 0.582 0.011 0.011 0.772 0.596 0.993 0.983 0.033 0.003 0.727 0.582 0.011 0.011 0.012 0.043 0.014 0.596 0.993 0.028 0.033 0.003 0.727 0.582 0.011 0.011 0.043 0.014 0.596 0.994 0.384 0.032 0.003 0.003 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.033 0.003 0.727 0.582 0.011 0.011 0.772 0.596 0.032 0.033 0.727 0.582 0.011 0.011 0.772 0.596 0.033 0.033 0.727 0.582 0.011 0.011 0.772 0.596 0.033 0.003 0.727 0.582 0.011 0.011 0.772 0.596 0.033 0.003 0.727 0.582 0.011 0.011 0.072 0.596 0.033 0.003 0.727 0.582 0.011 0.011 0.043 0.014 0.033 0.003 0 0 0 0.011 0.011 0.043 0.014 0.033 0.003 0 0 0 0.011 0.011 0.043 0.014 0.033 0.003 0.003 0.003 0.014 0.013 0.013 0.003 0.003 0.001 0.013 0.014 0.013 0.003 0.003 0.001 0.010 0.010 0.010 0.043 0.015 0.033 0.003 0.003 0.003 0.001 0.011 0.011 0.011 0.043 0.015 0.033 0.003 0.003 0.003 0.001 0.011 0.011 0.011 0.043 0.014 0.033 0.003 0.003 0.727 0.582 0.011 0.011 0.011 0.772 0.596 0.033 0.003 0.003 0.727 0.582 0.011 0.011 0.011 0.772 0.596 0.033 0.003 0.727 0.582 0.011 0.011 0.012 0.035 0.003 0.003 0.727 0.582 0.011 0.011 0.013 0.772 0.596 0.033 0.003 0.727 0.582 0.011 0.011 0.013 0.035 0.003 0.003 0.727 0.582 0.011 0.011 0.013 0.035 0.003 0.003 0.727 0.582 0.011 0.011 0.013 0.035 0.003	0.028	
0.032 0.003 0.727 0.582 0.011 0.011 0.770 0.596 0.995 0.383 0.033 0.003 0.727 0.582 0.011 0.011 0.772 0.596 0.994 0.384 0.033 0.003 0.727 0.582 0.011 0.011 0.012 0.722 0.596 0.994 0.384 0.032 0.003 0.727 0.582 0.011 0.011 0.012 0.043 0.014 0.590 0.028 0.032 0.003 0 0 0 0.011 0.011 0.043 0.015 0.014 0.590 0.028 0.032 0.003 0 0 0 0.011 0.011 0.043 0.015 0.014 0.596 0.028 0.033 0.003 0 0 0 0.011 0.011 0.043 0.015 0.014 0.596 0.028 0.033 0.003 0.003 0 0 0 0.011 0.011 0.043 0.015 0.015 0.043 0.033 0.003 0 0 0 0.011 0.011 0.011 0.043 0.015 0.588 0.028 0.033 0.003 0.003 0 0 0 0.011 0.011 0.072 0.596 0.780 0.240 0.033 0.003 0.727 0.582 0.011 0.011 0.072 0.596 0.780 0.240 0.033 0.003 0.727 0.582 0.011 0.011 0.072 0.596 0.780 0.240 0.033 0.003 0.727 0.582 0.011 0.011 0.072 0.596 0.780 0.240 0.033 0.003 0.727 0.582 0.011 0.011 0.072 0.596 0.780 0.240 0.033 0.003 0.727 0.582 0.011 0.011 0.072 0.596 0.780 0.240 0.033 0.003 0.727 0.582 0.011 0.011 0.072 0.596 0.780 0.240 0.033 0.003 0.727 0.582 0.011 0.011 0.072 0.596 0.780 0.240 0.033 0.003 0.003 0.00 0 0 0.011 0.011 0.072 0.596 0.780 0.240 0.033 0.003 0.003 0.00 0 0 0.011 0.011 0.072 0.596 0.780 0.240 0.033 0.003 0.003 0.00 0 0 0.011 0.011 0.072 0.596 0.780 0.240 0.033 0.003 0.003 0.000 0 0 0.011 0.011 0.072 0.596 0.780 0.240 0.033 0.003 0.003 0.000 0 0 0.011 0.011 0.014 0.750 0.596 0.780 0.033 0.003 0.003 0.000 0 0 0.011 0.011 0.014 0.750 0.596 0.780 0.033 0.003 0.003 0.000 0 0 0.011 0.011 0.014 0.750 0.596 0.780 0.033 0.003 0.003 0.000 0 0 0.011 0.011 0.014 0.590 0.015 0.018 0.034 0.003 0.003 0.000 0 0 0.011 0.011 0.014 0.	0.032 0.003 0.727 0.582 0.011 0.011 0.770 0.596 0.033 0.003 0.727 0.582 0.011 0.011 0.772 0.596 0.033 0.003 0.727 0.582 0.011 0.011 0.0772 0.596 0.033 0.003 0.727 0.582 0.011 0.011 0.011 0.043 0.014 0.033 0.003 0 0 0 0.011 0.011 0.043 0.014 0.033 0.003 0.003 0 0 0.0011 0.011 0.043 0.014 0.013 0.033 0.003 0 0 0.011 0.011 0.043 0.015 0.015 0.033 0.003 0.003 0.001 0.011 0.013 0.043 0.015 0.033 0.003 0.003 0.001 0.011 0.011 0.043 0.015 0.033 0.003 0.003 0.001 0.011 0.011 0.043 0.014 0.033 0.003 0.003 0.003 0.001 0.011 0.011 0.013 0.043 0.014 0.033 0.003 0.003 0.003 0.001 0.011 0.011 0.013 0.043 0.014 0.033 0.003 0.003 0.003 0.001 0.011 0.011 0.072 0.596 0.033 0.003 0.003 0.727 0.582 0.011 0.011 0.011 0.072 0.596 0.033 0.003 0.003 0.727 0.582 0.011 0.011 0.011 0.072 0.596 0.033 0.003 0.003 0.003 0.003 0.001 0.011 0.011 0.011 0.072 0.596 0.033 0.003 0.003 0.003 0.001 0.011 0.011 0.011 0.043 0.014 0.033 0.003 0.003 0.003 0.001 0.011 0.011 0.011 0.043 0.014 0.033 0.003 0.003 0.003 0.001 0.001 0.011 0.011 0.013 0.004 0.013 0.003 0.	0.384	
0.033 0.003 0.227 0.582 0.011 0.011 0.772 0.596 0.994 0.384 0.033 0.033 0.003 0.727 0.582 0.011 0.011 0.012 0.772 0.596 0.994 0.384 0.033 0.033 0.003 0.727 0.582 0.011 0.011 0.041 0.045 0.014 0.590 0.023 0.033 0.033 0.003 0 0 0 0.011 0.011 0.041 0.045 0.014 0.596 0.023 0.023 0.033 0.003 0 0 0 0.011 0.011 0.041 0.045 0.014 0.596 0.023 0.023 0.033 0.003 0 0 0 0.011 0.011 0.011 0.045 0.015 0.014 0.596 0.023 0.033 0.033 0.003 0 0 0 0.014 0.014 0.014 0.045 0.015 0.014 0.596 0.023 0.033	0.033 0.003 0.727 0.582 0.011 0.011 0.772 0.596 0.033 0.003 0.727 0.582 0.011 0.011 0.772 0.596 0.033 0.003 0.0 0 0 0.011 0.011 0.072 0.596 0.033 0.003 0 0 0 0.011 0.011 0.043 0.014 0.013 0.003 0 0 0 0.011 0.011 0.043 0.015 0.015 0.033 0.003 0 0 0 0.011 0.011 0.043 0.015 0.015 0.033 0.003 0 0 0 0.011 0.011 0.043 0.015 0.015 0.015 0.033 0.003 0 0 0 0.011 0.011 0.043 0.015 0.015 0.033 0.003 0.003 0 0 0 0.011 0.011 0.011 0.043 0.015 0.033 0.003 0.003 0.001 0.011 0.011 0.011 0.043 0.015 0.033 0.003 0.003 0.727 0.582 0.011 0.011 0.013 0.043 0.015 0.033 0.003 0.727 0.582 0.011 0.011 0.072 0.596 0.033 0.003 0.727 0.582 0.011 0.011 0.072 0.596 0.033 0.003 0.727 0.582 0.011 0.011 0.072 0.596 0.033 0.003 0.727 0.582 0.011 0.011 0.072 0.596 0.033 0.003 0.727 0.582 0.011 0.011 0.072 0.596 0.033 0.003 0.727 0.582 0.011 0.011 0.072 0.596 0.033 0.003 0.727 0.582 0.011 0.011 0.072 0.596 0.033 0.003 0.727 0.582 0.011 0.011 0.072 0.596 0.033 0.003 0.727 0.582 0.011 0.011 0.073 0.043 0.014 0.033 0.003 0.003 0.727 0.582 0.011 0.011 0.073 0.043 0.014 0.033 0.003 0.003 0.727 0.582 0.011 0.011 0.073 0.043 0.014 0.033 0.003 0.003 0.727 0.582 0.011 0.011 0.011 0.043 0.014 0.039 0.033 0.003 0.	0.383	
0.033 0.003 0.027 0.582 0.011 0.011 0.772 0.596 0.024 0.344 0.346 0.032 0.003	0.033 0.003 0.727 0.582 0.011 0.011 0.053 0.014 0.033 0.003 0.003 0 0 0 0.011 0.011 0.043 0.014 0.033 0.003 0 0 0 0.011 0.011 0.045 0.015 0.015 0.033 0.003 0 0 0 0.011 0.011 0.045 0.015 0.015 0.033 0.003 0 0 0 0.011 0.011 0.011 0.045 0.015 0.015 0.033 0.003 0 0 0 0.011 0.011 0.045 0.015 0.015 0.033 0.003 0 0 0 0.011 0.013 0.045 0.015 0.033 0.003 0 0 0 0.011 0.011 0.011 0.043 0.013 0.033 0.003 0 0 0 0.011 0.011 0.011 0.045 0.013 0.033 0.003 0.003 0 0 0 0.011 0.011 0.011 0.043 0.015 0.033 0.003 0.727 0.582 0.011 0.011 0.011 0.043 0.014 0.033 0.003 0.727 0.582 0.011 0.011 0.011 0.772 0.596 0.033 0.003 0.727 0.582 0.011 0.011 0.011 0.043 0.014 0.033 0.003 0.727 0.582 0.011 0.011 0.011 0.072 0.596 0.033 0.003 0.727 0.582 0.011 0.011 0.011 0.043 0.014 0.033 0.003 0.727 0.582 0.011 0.011 0.011 0.043 0.014 0.033 0.003 0.727 0.582 0.011 0.011 0.011 0.043 0.014 0.033 0.003 0.727 0.582 0.011 0.011 0.011 0.043 0.014 0.033 0.003 0.727 0.582 0.011 0.011 0.011 0.043 0.014 0.033 0.003 0.727 0.582 0.011 0.011 0.011 0.043 0.014 0.033 0.003 0.727 0.582 0.011 0.011 0.011 0.043 0.014 0.033 0.003 0.727 0.582 0.011 0.011 0.043 0.014 0.034 0.034 0.033 0.003 0.727 0.582 0.011 0.011 0.043 0.043 0.014 0.034 0.034 0.034 0.033 0.003 0.727 0.582 0.011 0.011 0.043 0.043 0.014 0.033 0.033 0.003 0.727 0.582 0.011 0.011 0.043 0.043 0.014 0.033 0.033 0.003 0.727 0.582 0.011 0.011 0.043 0.043 0.014 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.034	0.384	
0.032 0.003 0 0 0.003 0.003 0.004 0.055 0.003 0	0.032 0.003 0 0 0.011 0.011 0.043 0.014 0.033 0.033 0.003 0.003 0 0 0.0011 0.011 0.043 0.015 0.033 0.003 0 0 0 0.011 0.011 0.043 0.014 0.033 0.003 0 0 0.011 0.011 0.011 0.043 0.014 0.033 0.003 0 0 0.011 0.011 0.011 0.043 0.014 0.033 0.033 0.003 0 0 0.011 0.011 0.011 0.043 0.013 0.033 0.003 0 0 0 0.011 0.011 0.011 0.043 0.013 0.033 0.003 0 0 0 0.011 0.011 0.011 0.043 0.013 0.033 0.003 0.033 0.003 0.032 0.031 0.011 0.011 0.011 0.043 0.014 0.033 0.003 0.033 0.031 0	0.384	
0.023 0.003 0 0 0.011 0.011 0.045 0.015 0.568 0.028 0.028 0.023 0.003 0 0 0.011 0.041 0.043 0.014 0.558 0.028 0.028 0.013 0.013 0.014 0.043 0.014 0.055 0.014 0.055 0.048 0.028 0.028 0.028 0.028 0.023 0.003 0 0 0 0.011 0.011 0.045 0.015 0.568 0.028 0.028 0.028 0.028 0.028 0.033	0.033	0.028	
0.032 0.003 0 0 0.011 0.011 0.043 0.014 0.550 0.028 0.028 0.033 0.003 0 0 0.018 1.14 1.756 0.032 0.003 0 0.003 0 0.001 0.011 0.011 0.043 0.011 0.0545 0.012 0.003 0.003 0 0.003 0.013 0.013 0.003 0.003 0.003 0.003 0.001 0.011 0.011 0.043 0.013 0.003 0.003 0.003 0.001 0.011 0.011 0.043 0.013 0.003 0.003 0.003 0.001 0.011 0.011 0.043 0.013 0.030 0.033 0.003 0.003 0.001 0.011 0.011 0.043 0.014 0.556 0.028 0.028 0.033 0.003 0.003 0.001 0.011 0.011 0.043 0.014 0.556 0.028 0.038 0.033 0.003 0.003 0.001 0.011 0.011 0.072 0.596 0.780 0.240 0.033 0.003 0.003 0.001 0.011 0.011 0.072 0.596 0.780 0.240 0.033 0.003 0.003 0.001 0.011 0.011 0.043 0.014 0.556 0.028 0.028 0.033 0.003 0.003 0.001 0.011 0.011 0.043 0.014 0.556 0.028 0.028 0.033 0.003 0.003 0.001 0.011 0.011 0.043 0.014 0.556 0.028 0.028 0.033 0.003 0.0 0.0 0.011 0.011 0.043 0.014 0.556 0.028 0.028 0.033 0.003 0.0 0.0 0.011 0.011 0.043 0.014 0.556 0.028 0.028 0.033 0.003 0.0 0.0 0.011 0.011 0.043 0.014 0.556 0.028 0.028 0.033 0.033 0.003 0.0 0.0 0.011 0.011 0.043 0.014 0.556 0.028 0.028 0.033 0.033 0.003 0.0 0.0 0.011 0.011 0.043 0.014 0.556 0.028 0.028 0.033 0.033 0.003 0.0 0.0 0.011 0.011 0.043 0.014 0.556 0.028 0.028 0.033 0.033 0.003 0.0 0.0011 0.011 0.044 0.044 0.054 0.055 0.028 0.038 0.039 0.039 0.003 0.0 0.011 0.011 0.044 0.044 0.054 0.054 0.055 0.028 0.038 0.039 0.039 0.003 0.0 0.011 0.011 0.011 0.044 0.056 0.056 0.028 0.028 0.039 0.039 0.003 0.0 0.011 0.011 0.044 0.044 0.056 0.028 0.028 0.038 0.039 0.039 0.003 0.0 0.001 0.0 0.011 0.011 0.044 0.056 0.028 0.028 0.038 0.039 0.003 0.0 0.003 0.0 0.001 0.0 0.011 0.011 0.044 0.044 0.056 0.028 0.028 0.028 0.038 0.039 0.039 0.003 0.0 0.003 0.0 0.001 0.0 0.011 0.011 0.044 0.056 0.028 0.028 0.028 0.038 0.039 0	0.032	0.028	
0.033 0.003 0 0 0 0 0 0 1 0 0 1 0 0	0.033 0.003 0 0 0.011 0.011 0.045 0.015 0.1392 0.039 2.908 2.326 0.134 0.134 3.434 2.500	0.028	
Fermanent Irrigation Scenario Farmer's Korner Farmer Farmer's Korner Farme	Houriksen Property Permanent Irrigation Scenario	0.028	
Permanent Property Permanent Property Phase	Heartkeen Property Permanent Irrigation Scenario	1.756	
Handle	Theoritical Periodic Treignton Stock Total Demand CU Deman		
Demand CU Deficions 0.033 0.003 0.003 0 0.011 0.011 0.045 0.015 0.053 0.003 0.028 0.028 0.030 0.003 0 0.011 0.011 0.043 0.015 0.023 0.028 0.028 0.032 0.003 0 0 0.011 0.011 0.043 0.015 0.028 0.032 0.003 0 0 0.011 0.011 0.043 0.028 0.028 0.032 0.003 0.727 0.582 0.011 0.011 0.772 0.596 0.780 0.240 0.032 0.003 0.727 0.582 0.011 0.011 0.772 0.596 0.780 0.240 0.033 0.003 0.727 0.582 0.011	Demand CU Demand Demand <td></td> <td>Fotal (Including Henrike</td>		Fotal (Including Henrike
Demand CL Demand	Dermand CU CU CU Dermand Dermand CU Dermand		Total Total
0.033 0.003 0.03 0.011 0.011 0.013 0.015 0.053 0.015 0.053 0.015 0.053 0.015 0.053 0.015 0.053 0.053 0.015 0.015 0.045 0.053 0.053 0.017 0.011 0.011 0.014 0.015 0.053 0.012	0.033 0.003 0 0.011 0.011 0.045 0.015 0.030 0.003 0 0 0.010 0.010 0.040 0.013 0.033 0.003 0 0 0.011 0.011 0.045 0.015 0.032 0.003 0 0 0.011 0.011 0.045 0.015 0.032 0.003 0.727 0.582 0.011 0.011 0.772 0.596 0.033 0.003 0.727 0.582 0.011 0.011 0.772 0.596 0.033 0.003 0.727 0.582 0.011 0.011 0.772 0.596 0.033 0.003 0.727 0.582 0.011 0.011 0.772 0.596 0.033 0.003 0.727 0.582 0.011 0.011 0.772 0.596 0.033 0.003 0.727 0.582 0.011 0.011 0.043 0.044 0.032 0.003 <t< td=""><td>Depletions</td><td></td></t<>	Depletions	
0.039 0.003 0 0.010 0.010 0.040 0.013 0.513 0.026 0.554 0.032 0.003 0 0.011 0.011 0.014 0.568 0.028 0.053 0.032 0.003 0 0.011 0.011 0.014 0.568 0.028 0.053 0.032 0.003 0.727 0.582 0.011 0.011 0.770 0.596 0.750 0.240 1.552 0.032 0.003 0.727 0.582 0.011 0.011 0.770 0.596 0.762 0.230 1.552 0.033 0.003 0.727 0.582 0.011 0.011 0.770 0.596 0.780 0.230 1.552 0.033 0.003 0.727 0.582 0.011 0.011 0.772 0.596 0.780 0.230 1.552 0.033 0.003 0 0.011 0.011 0.012 0.596 0.780 0.230 1.552 0	0.036 0.003 0 0.010 0.010 0.040 0.013 0.033 0.003 0 0 0.011 0.011 0.045 0.015 0.032 0.003 0.727 0.582 0.011 0.011 0.043 0.014 0.032 0.003 0.727 0.582 0.011 0.011 0.772 0.586 0.033 0.003 0.727 0.582 0.011 0.011 0.772 0.586 0.033 0.003 0.727 0.582 0.011 0.011 0.772 0.586 0.033 0.003 0.727 0.582 0.011 0.011 0.772 0.596 0.033 0.003 0 0.011 0.011 0.772 0.596 0.032 0.003 0 0.011 0.011 0.043 0.014 0.032 0.003 0 0 0.011 0.011 0.044 0.014 0.033 0.003 0 0 0.011<	0.028	l
0.033 0.003 0.003 0.001 0.011 0.014 0.015 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.014 0.017 0.014 0.014 0.017 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 <th< td=""><td>0.033 0.003 0.003 0 0 0 0.011 0.011 0.045 0.015 0.032 0.032 0.003 0.72 0.550 0.001 0.001 0.001 0.045 0.015 0.003 0.003 0.72 0.550 0.011 0.011 0.011 0.0772 0.596 0.033 0.003 0.727 0.582 0.011 0.011 0.772 0.596 0.033 0.003 0.727 0.582 0.011 0.011 0.772 0.596 0.033 0.003 0.727 0.582 0.011 0.011 0.772 0.596 0.033 0.003 0.727 0.582 0.011 0.011 0.772 0.596 0.033 0.003 0.0 0.0 0.011 0.011 0.011 0.014 0.032 0.003 0.0 0.0 0.011 0.011 0.011 0.014 0.032 0.003 0.0 0.0 0.011 0.011 0.011 0.043 0.015 0.033 0.033 0.0 0.0 0.011 0.011 0.011 0.043 0.015 0.033 0.033 0.0 0.0 0.011 0.011 0.011 0.043 0.015 0.033 0.033 0.0 0.0 0.011 0.011 0.011 0.043 0.015 0.033 0.033 0.0 0.0 0.011 0.011 0.011 0.043 0.015 0.033 0.039 0.0 0.0 0.011 0.011 0.011 0.043 0.015 0.033 0.039 0.0 0.0 0.011 0.011 0.011 0.043 0.015 0.033 0.039 0.0 0.011 0.011 0.011 0.011 0.011 0.043 0.015 0.033 0.039 0.0</td><td>0.026</td><td></td></th<>	0.033 0.003 0.003 0 0 0 0.011 0.011 0.045 0.015 0.032 0.032 0.003 0.72 0.550 0.001 0.001 0.001 0.045 0.015 0.003 0.003 0.72 0.550 0.011 0.011 0.011 0.0772 0.596 0.033 0.003 0.727 0.582 0.011 0.011 0.772 0.596 0.033 0.003 0.727 0.582 0.011 0.011 0.772 0.596 0.033 0.003 0.727 0.582 0.011 0.011 0.772 0.596 0.033 0.003 0.727 0.582 0.011 0.011 0.772 0.596 0.033 0.003 0.0 0.0 0.011 0.011 0.011 0.014 0.032 0.003 0.0 0.0 0.011 0.011 0.011 0.014 0.032 0.003 0.0 0.0 0.011 0.011 0.011 0.043 0.015 0.033 0.033 0.0 0.0 0.011 0.011 0.011 0.043 0.015 0.033 0.033 0.0 0.0 0.011 0.011 0.011 0.043 0.015 0.033 0.033 0.0 0.0 0.011 0.011 0.011 0.043 0.015 0.033 0.033 0.0 0.0 0.011 0.011 0.011 0.043 0.015 0.033 0.039 0.0 0.0 0.011 0.011 0.011 0.043 0.015 0.033 0.039 0.0 0.0 0.011 0.011 0.011 0.043 0.015 0.033 0.039 0.0 0.011 0.011 0.011 0.011 0.011 0.043 0.015 0.033 0.039 0.0	0.026	
0.032 0.003 0 0.011 0.011 0.043 0.054 0.550 0.023 0.593 0.033 0.033 0.033 0.033 0.033 0.034 0.727 0.596 0.772 0.596 0.770 0.240 1.552 0.032 0.033 0.033 0.727 0.582 0.011 0.011 0.772 0.596 0.780 0.240 1.552 0.033 0.003 0.727 0.582 0.011 0.011 0.772 0.596 0.780 0.240 1.552 0.033 0.003 0.727 0.582 0.011 0.011 0.772 0.596 0.780 0.240 1.552 0.033 0.003 0.727 0.596 0.770 0.014 0.556 0.770 0.240 1.552 0.033 0.003 0.0 0.011 0.011 0.043 0.014 0.024 0.556 0.024 1.552 0.033 0.003 0.0 0.011 0.011	0.032 0.003 0 0.011 0.011 0.043 0.014 0.033 0.003 0.727 0.852 0.011 0.011 0.772 0.396 0.033 0.003 0.727 0.852 0.011 0.011 0.772 0.396 0.033 0.003 0.727 0.852 0.011 0.011 0.772 0.396 0.033 0.003 0.727 0.582 0.011 0.011 0.772 0.396 0.033 0.003 0.727 0.582 0.011 0.011 0.772 0.596 0.032 0.003 0.727 0.582 0.011 0.011 0.772 0.596 0.032 0.003 0 0 0.011 0.011 0.043 0.014 0.033 0 0 0.011 0.011 0.043 0.015 0.039 2.908 2.326 2.326 0.134 0.134 0.134 2.509 Inhalphane content point in inhalphane content	0.028	
0.033 0.033 0.727 0.582 0.011 0.012 0.596 0.780 0.240 1.552 0.032 0.033 0.727 0.582 0.011 0.012 0.770 0.296 0.780 0.239 1.532 0.032 0.003 0.727 0.582 0.011 0.012 0.720 0.240 1.552 0.033 0.003 0.727 0.582 0.011 0.011 0.722 0.596 0.780 0.240 1.552 0.032 0.003 0.727 0.582 0.011 0.011 0.724 0.556 0.780 0.240 1.552 0.033 0.003 0.727 0.596 0.014 0.014 0.014 0.568 0.028 0.593 0.033 0.003 0 0.011 0.011 0.014 0.014 0.014 0.556 0.028 0.028 0.033 0.003 0 0.011 0.011 0.014 0.014 0.014 0.014 0.014	0.033 0.003 0.727 0.552 0.011 0.011 0.772 0.556 0.032 0.033 0.003 0.772 0.555 0.001 0.011 0.0772 0.556 0.003 0.032 0.003 0.727 0.552 0.011 0.011 0.772 0.556 0.033 0.003 0.727 0.552 0.011 0.011 0.772 0.556 0.033 0.003 0.727 0.552 0.011 0.011 0.011 0.772 0.596 0.033 0.003 0.727 0.556 0.011 0.011 0.011 0.072 0.596 0.033 0.003 0.0 0.0 0.011 0.011 0.011 0.045 0.015 0.033 0.003 0.0 0.0 0.011 0.011 0.011 0.045 0.015 0.033 0.003 0.0 0.0 0.011 0.011 0.001 0.045 0.015 0.033 0.033 0.0 0.0 0.011 0.0 0.0 0.0 0.0 0.0 0.0 0	0.028	
0.033 0.003 0.727 0.582 0.011 0.011 0.770 0.596 0.762 0.239 1.532 0.033 0.033 0.727 0.582 0.011 0.011 0.772 0.596 0.780 0.239 1.532 0.033 0.003 0.727 0.582 0.011 0.011 0.772 0.596 0.780 0.240 1.552 0.033 0.003 0.0 0.0 0.011 0.011 0.072 0.056 0.780 0.200 1.552 0.033 0.033 0.0 0.0 0.0 0.011 0.011 0.045 0.015 0.058 0.032 0.033 0.0 0.0 0.0 0.011 0.011 0.045 0.015 0.058 0.033 0.033 0.033 0.0 0.0 0.0 0.011 0.011 0.045 0.015 0.056 0.038 0.053 0.051 0.05	0.033 0.003 0.727 0.582 0.011 0.011 0.770 0.596 0.033 0.003 0.727 0.582 0.011 0.011 0.770 0.596 0.033 0.003 0.727 0.582 0.011 0.011 0.772 0.596 0.033 0.003 0.727 0.582 0.011 0.011 0.772 0.596 0.032 0.003 0.003 0.02 0.001 0.0 0.011 0.011 0.011 0.045 0.096 0.032 0.003 0.0 0 0.011 0.011 0.011 0.045 0.015 0.032 0.003 0.0 0 0.011 0.011 0.011 0.045 0.015 0.033 0.033 0.0 0 0.011 0.011 0.011 0.045 0.015 0.035 0.033 0.034 0.0 0.011 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.240	
0.033	6.033 6.003 6.727 6.582 6.611 6.011 0.772 6.596 6.053 6.033 6.003 6.727 6.582 6.611 6.011 0.772 6.596 6.033 6.003 6.727 6.582 6.611 6.011 0.772 6.596 6.032 6.033 6.033 6.0 0 0 6.011 0.011 0.043 6.034 6.032 6.033 6.0 0 0 6.011 0.011 0.043 6.035 6.033 6.0 0 0 6.011 0.011 0.043 6.035 6.035 6.033 6.0 0 0 6.011 0.011 0.043 6.035 6.035 6.033 6.0 0 0 6.011 0.011 0.043 6.035 6.035 6.035 6.035 6.033 6.034 6.034 6.034 6.033 6.034 7.356 6.134 6.134 7.343 7.350 6.134 6.134 7.356 7.350 6.134 6.134 6.134 7.356 7.350 6.134 6.134 6.134 7.356 7.350 6.134 6.134 6.134 7.356 7.350 6.134 6.134 6.134 7.356 7.350 6.134 6.134 7.356 7.350 6.134 6.134 7.343 7.343 7.356 7.350 6.134 6.134 7.356 7.350 6.134 6.134 7.356 7.350 6.134 7.356 7.350 6.134 7.356 7.350 6.134 7.356 7.350 6.134 7.356 7.350 6.134 7.356 7.350 6.134 7.356 7.350 6.134 7.356 7.350 6.134 7.356 7.350 6.134 7.356 7.350 6.134 7.356 7.350 6.134 7.356 7.350 6.134 7.356 7.350 6.134 7.356 7.350 6.134 7.356 7.350 6.134 7.356 7.350 6.134 7.356 7.	0.239	
0.033	0.033 0.003 0.727 0.582 0.011 0.011 0.772 0.596 0.032 0.033 0.003 0.772 0.596 0.033 0.033 0.003 0.0 0.011 0.011 0.011 0.043 0.014 0.033 0.003 0.0 0.011 0.011 0.011 0.045 0.015 0.035 0.033 0.0 0.0 0.011 0.011 0.011 0.045 0.015 0.035 0.039 2.906 2.356 0.134 0.134 0.134 2.500 0.059 0.039 2.906 2.356 0.134 0.134 0.134 2.500 0.059 0.039 0.036 0.036 0.034 0.036 0.	0.240	
0.032 0.003 0 0 0.011 0.011 0.014 0.550 0.038 0.593	0.032 0.003 0 0.003 0 0 0.011 0.011 0.013 0.014 0.014 0.003 0.003 0.0043 0.0044 0.0033 0.0033 0 0.003 0 0.011 0.011 0.045 0.005 0.005 0.003 0 0 0.011 0.011 0.043 0.014 0.033 0.003 0 0 0.011 0.011 0.011 0.043 0.014 0.039 2.946 2.356 0.134 0.134 3.434 2.500 0.044 0.	0.240	
0.013 0.003 0.003 0.0041 0.011 0.0145 0.015 0.058 0.033 0.613	0.033 0.003 0.003 0 0 0.011 0.011 0.015 0.015 0.015 0.035 0.033 0.033 0 0 0.041 0.011 0.011 0.045 0.015 0.035 0.033 0 0.034 0.031 0.033 0 0.039 2.908 2.326 0.334 0.134 3.434 2.500 1st-bassia decreaseds for Bud's property are bused on 3.5 people using 100 gal/Mayipenium In-brasis conservative wai is for percent based on an influence opportative rapids disposen.	0.028	
0.032 0.003 0 0 0.011 0.011 0.014 0.550 0.028 0.593	0.032 0.003 0 0 0.014 0.011 0.011 0.011 0.014 0.014 0.033 0.003 0 0 0.011 0.011 0.011 0.043 0.015 0.033 0.003 0 2.908 2.326 0.134 0.134 0.134 2.500 0.154 0.134 1.045 0.015 0.	0.028	
0.033 0.003 0.003 0 0.0.011 0.011 0.014 0.045 0.056 0.038 0.0513 0.053 0.033 0.053 0	0.033 0.003 0 0.011 0.011 0.015 0.592 0.039 2.908 2.326 0.134 0.134 3.434 2.500 Is because demands for the property are based on 3.5 people with 100 gal/May/person Is because demands for the processor based on an individual son-experitive suggles disposed types	0.028	
0.592 0.039 2.908 2.326 0.134 3.434 2.500 7.540 1.182 10.974 To brasse demands for Bud's property are based on a folk-virial gold gabbles/person. To brasse demands for Bud's property are based on an individual sorre-experience regation deposed system. In place of the demands are based on an individual acree-experience regation deposed system. A fear-month imaginism sensors, and an intigation of figures of the prevent. Sood vostering demands are based on ten havens using 12 galforn per based (100% comments vir).	0.392 0.039 2.908 2.356 0.134 0.134 2.500 Behasse demands for Bach property are hand on 3.5 people using 100 gabbles/person. Tehnase connected for Bach property are hand in 3.5 people using 100 gabbles/person.	0.028	
	Nees: Nebsase denaats for Buf's property are housel to 3.5 people using 100 gabbay-pensor. Telesase consentence was in ten proceed bood on an individual non-enquentive neglic disposal system.	1.182	
Technomic annuarigative was in tem processed based on an individual name-exportative negatio disposed system. Impations demands are broand on 1 6 access (70,000 sq. ft.) of freignative, a connumeryative use of 1.45 ac-Rhoste spread over- a final-month imigation notions, and an intigation efficiency of 700 percent. Soods systeming demands are handed on ten herein using 12 gallerin per day per head (1000s connectative).	Technologica commençativa una in tem percenti besod en un individual nun-enquentive negtio diquisal appem		
Engation demands are bound on 1.6 acres (70,000 sq. ft.) of resignitor, a connumptive use of 1.45 architects spread reven a fune-month emignion somer, and an intigation efficiency of 70 percent. Soods watering demands are based on ten horses using 12 gallers per day per boad (100% connemptive).			
a four-mostle imignion nomers, and an intigation efficiency of TII percent. Soods soutering demands are handel on ten horizon uning 12 gallorin per day per hood (1900s commengines)	Emigations domain the bound one 1 is acres \$70,000 sq. ft } of weightfore, a commerciative use of 1.45 activities ignored owner		
devariant to the control proof and the read arranged to the control and the control are the control and the co	a faur-marth emprion source, and an intigation efficiency of RD percent.		
	System with mark decreased a mark becomes usually 2.2 gallering per day price process comments and based on the		

David Flanigan 115 Omaha Dr Breckenridge, CO 80424-9602

Enal Demand Tables - Phase II Including Henriksen Property (values in acre-feet)

Table 2 - Revised Farmer's Korner

Start-Up Irrigation Scenario

				Thomship	Thursday Bearings				Parmer	Parmer's Borner	Total duchad	Total Machadina Barribaan	
				CHUMNS	en reoperty				LIE	36.30	TOTAL (INCIDE)	ing mentilasen.	
	Ins	Inside	Irrigation	ation	Spek		Total		Assertation Co.	100 × 600 m	Total	Extal	
outh	Demand	D)	Demand	3	Demand	5	Demand	5	Demand	Depletions	Deniand	Depictions	
ı	0.033	0.003	0	0	110%	0,011	0.045	0.015	0.568	0.028	0.613	0.043	
	0.030	0.003	0	0	2,010	0.010	0.010	0.013	0.513	9000	0.534	0.039	
	0.033	0.003	0	0	2,011	110.0	0.045	0.015	0.568	0.028	0.613	0.043	
	0.432	0.003	0	0	3,011	1100	0.043	0.014	0.550	0.028	0.533	0.042	
	0.433	0.003	0.727	0.582	1100	110.0	0.772	0.596	0.924	0.384	1,695	0.980	
	0.432	0.003	0.727	0.582	2,011	0.011	0.770	965-0	0.905	0.383	1.676	0.979	
	0.833	0.003	0.727	0.582	3,011	110.0	0.772	968.0	0.924	0.384	1.635	0860	
	0.033	0.003	0.727	0.582	0.011	110.0	0.772	965'0	0.924	0.384	1.695	0860	
	0.032	0.003	0	0	0.011	0.011	0.043	0.014	0.550	0.028	0.533	0.042	
	0.033	0.003	0	0	0.011	0.011	0.045	0.015	0.568	0.028	0.613	0.043	
	0.632	0.003	0	0	0.011	0.001	0.043	0.014	0.550	0.028	0.593	0.042	
	0.633	0.003	0	0	0.011	0.011	0.045	0.015	0.568	0.028	0.613	0.043	
15	0.392	0.035	2,908	2.336	0.134	0.134	3,434	2.500	8,114	1,756	11.48	4256	
					D.	ermanent	Permanent Irrigation Scenario	nario					
				Henriks	Henriksen Property				Farmer ?ha	Farmer's Kurner Phase II	Total (Includ	Total (Including Herriksen)	
	Ins	Inside	Irrig	Irrigation	Stock	ck	Total	tal			Total	Total	
	Derrand	CO	Demand	13	Demand	3	Demand	כת	Demard	Depletions	Demand	Depictions	
1	0.033	000	0	0	110.0	0.011	0.045	0.015	0.568	0.028	0.613	0.043	
	0.030	100.0	c	a	0.000	0.010	0.040	6.013	0.513	0.026	0.554	0000	
	0.033	0.002	0	0	0.011	0.011	0.045	0.015	0.568	0.028	0.613	0.043	
	0.032	0.002	0	0	0.011	0.011	0.043	0.014	0.550	0.028	0.593	0.042	
	0.033	0.002	1777	0.582	0.011	0.011	0.772	0.596	0.780	0.240	1.352	0.837	
	0.032	0.00	(.727	0.582	0.011	0.011	0.770	0.596	0.762	0.239	1.532	0.835	
	0.033	100 U	T-177)	0.587	110.0	0.011	0.772	0.596	0.780	0.240	1.552	0.837	
	0.033	0.00	(.727.)	0.582	0.011	0.011	0.772	0.596	0.780	0.240	1.552	0.837	
	0.032	0000	0	0	0.011	0.011	0.013	0.014	0.550	0.028	0.593	0.042	
	0.033	0.003	0	0	0.011	0.011	0.043	0.015	0,568	0.028	0.613	0.043	
	0.032	0.002	0	0	1100	0.011	0.043	0.014	0.550	0.028	0.503	0.042	

Well drill and reports, 7/14/1999

10	WELL CONSTRUCTION AND TES 01/73 STATE OF COLORADO, OFFICE OF THE STATE	T REPORT For Office Use only TE ENGINEER	
1.	1. WELL PERMIT NUMBER MH-25403		
2	2 OWNER NAME(S) Larry Smith Mailing Address P.O. Box 127 City, St. Zip Frisco CO 804/3		
H	Priorie () 970-453-0353		
3.	MELL LOCATION AS DRILLED: 1/4 SW 1/4. DISTANCES FROM SEC. LINES: th. from Sec. line. and SUBDIVISION: STREET ADDRESS AT WELL LOCATION:	Sec. 31 Twp. 5 S , Range 77 W ft. from	
4.	GROUND SURFACE ELEVATION R. DI	RILLING METHOD	
L	DATE COMPLETED April 15, 1995 . TOTAL	DEPTH 38 R. DEPTH COMPLETED 38	
	GEOLOGIC LOG: Depth Description of Material (Type, Size, Color, Water Location)	6. HOLE DIAM. (in.) From (ft) To (ft) 9 0 28 6 1/2 28 38	
	0 to 35 feet - boulders and gravels	7. PLAIN CASING OD (in) Kind Wall Size From(ft) 7 steel .231 0 2	To(t
	35 to 38 feet - black shale water at 19 feet	PERF. CASING: Screen Siot Size: 7	
_		8. FILTER PACK: 9. PACKER PLACEME Material Type Type Interval Depth	N
-			_
REN	EMARKS:	10. GROUTING RECORD: Material Amount Density Interval Placement cement 1 sack 7 gal/sack 10 to 20 gravi	ty
	DISINFECTION: Type clorox	Amt. Used 1/8 cup	=
Sp		tted on Form No. GWS 39 Supplemental Well Test. 15 , 1995 Production Rate 50 gp Test length (hrs.) 2	M,
11	I have read the statements made herein and know the contents thereof, of C.R.S., the making of false statements herein constitutes perjury in the se	and that they are true to my knowledge. [Pursuant to Section 24-4-104	(13)

MALLES

Jul-27-99 07:16P

P.01

SAMUELSON PUMP CO. INC.

P.O. BOX 297 GLENWOOD SPRINGS COLORADO 81902 WATER SYSTEMS SALES, SERVICE & INSTALLATION 945-6309

July 28, 1999

Larry Smith P.O. Box 127 Prisco, Co. 80443

Attn: Larry

On July 14, 1999 a well test was conducted on Monitor Hole MH-35971 the following information was obtained;

This test was conducted with a 7 1/2 hp. Goulds submersible Model 225H. The well recovered back to 8'-9" in 20 min. If you have any questions please call me Raun Samuelson at 970-945-6309.

Sincerely;

Raun Samuelson

Equipment value/system stats letter, 6/12/2001.

ALPENSEE WATER DISTRICT
P. O. Box 2204
Frisco, CO 80443
(970) 453-1002

June 12, 2001

To Larry

Fax 303-368-5863

From Lori Cutunilli Fax 970-453-8522 Cell 970-389-1524

Hi Larry:

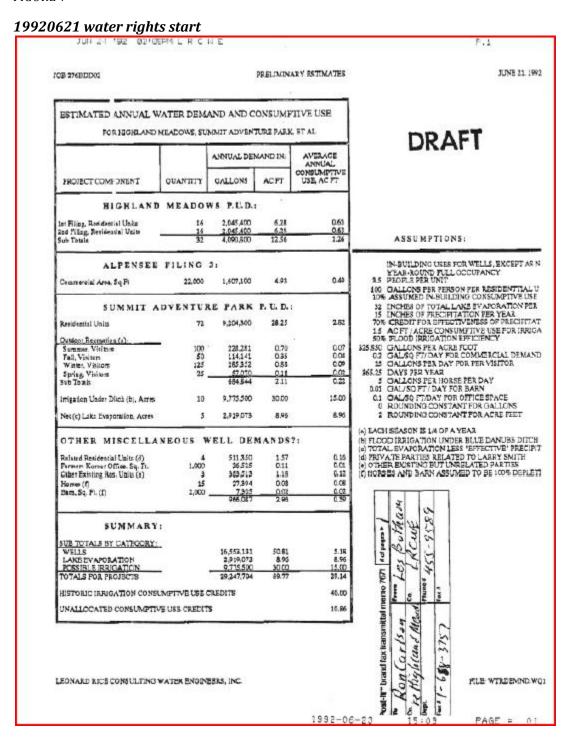
Following are the answers to your questions regarding insurance coverage for the Alpensee Water District:

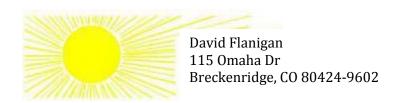
There are approximately 1-1/4 miles of water line We anticipate using approximately 1 acre-foot of water annually

The tank holds 270,000 gallons of water Value of pumps, controls, etc. is \$700,000.00

The water lines are ductile iron

The pump room is approximately 800 square feet


Please feel free to call or fax me if I can be of further assistance or when you have a quote. Thanks.


Sincerely,

Lori Cutunilli

my phota 1-303-568-5757x339

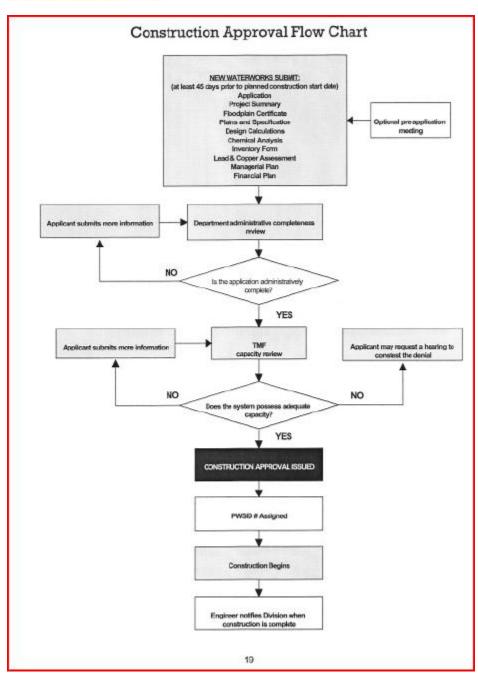
mail tlambrechtewisenins.com/website www.wilsonins.com

Hydrant count 8/4/2004

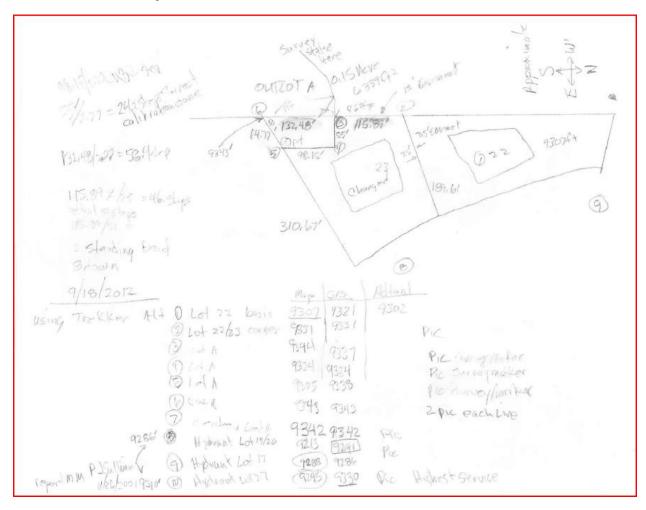
CoriCuturille 485.0819 Matt fax 202-0217 @ Fire Hydrant Count for Alpensee Water Dist 13 Subdivision 4 Alp 3 Commercial

1 by mobile Home Park of School Total @ Following is Nov 2001 Letter stating flow test results from the furthest, highest hydrant from pump house which is what was requested approved by RW.B. @ Also letter from System engineer @ Missing page with "Water Supply Info" requested. We were never required to Jest all the hydrauss flow-only at the top of the system. "hut biggers did flushing of Kept records of pressure (hopefully-I witnessed autests on ea hydrant but do not have the records) Thanks Lovi


Cover of Capacity Plan Manual no date


COLORADO DEPARTMENT OF PUBLIC HEALTH AND ENVIRONMENT

NEW WATER SYSTEM CAPACITY PLANNING MANUAL


WATER QUALITY CONTROL DIVISION
WATER QUALITY PROTECTION SECTION
WQCD-CMDM-B2
4300 CHERRY CREEK DRIVE SOUTH
DENVER, CO 80246-1530
(303) 692-3500

SAN MIGUEL CO ENV HEALTH DEPT Env HI	th Officer David	Schnock	970-728-0447
P.O. Box 4130	th Officer Dave	senneck	970-720-0447
Telluride, CO 81435			
970-728-0447, Fax No. 970-728-6325			
SEDGWICK COUNTY			
NORTHEAST COLORADO HEALTH DEPT	Director:	Denise Hase	970-522-3741x120
700 Columbine Street	Adm Dir:	Laura Jorstad*	970-522-3741x120
Sterling, CO 80751	Env Hith Dir.	Rob Witt	970-522-3741x122
970-522-3741, Fax No. 970-522-1412	Nurs Dir:	Joy Vondy-Butt	970-522-3741x150
SUMMIT COUNTY			
SUMMIT CO PH NURSING SERVICE	PH Nurse	Debby Crook	970-668-4181
P.O. Box 2280	HIth Officer	Pat Duletsky	970-668-5584
Frisco, CO 60443			
970-668-5230, Fax No. 970-668-4115			
SUMMIT COUNTY ENV HEALTH DEPT P.O. Box 5660 - 37 Summit County Rd #1005	Env Hith Officer	Jim Rada	970-668-4072
Frisco, CO 80443 970-668-4070, Fax No. 970-668-4225			
TELLER COUNTY			
TELLER CO PH NURSING SERVICE P.O. Box 5079 Woodland Park, CO 80866 719-687-1404, Fax No. 719-687-5256	Director	Karen O'Brien	719-687-5248
110 007 1404, 1 00 110 110 10 10 10 10 10 10 10 10 10			
TELLER CO ENV HEALTH DEPT P.O. Box 5079 Woodland Park, CO 80866	Env Hith Officer	Tom Wood, MD	719-687-5250
719-687-5250, Fax No. 719-687-5256			
WASHINGTON COUNTY			
NORTHEAST COLORADO HEALTH DEPT	Director	Donico Hono	070 522 2741+120
	Director: Adm Dir:	Denise Hase Laura Jorstad*	970-522-3741x120 970-522-3741x117
700 Columbine Street Sterling, CO 80751	Adm Dir: Env Hith Dir:	Rob Witt	970-522-3741x117 970-522-3741x122
970-522-3741, Fax No. 970-522-1412	Nurs Dir:	Joy Vondy-Butt	970-522-3741x122
510-522-5141, FBX NO. 910-522-1412	Hulo Dii.	Joy Volidy-Butt	310-322-3141X130
WELD COUNTY			
WELD COUNTY HEALTH DEPT	Director:	John Pickle	970-304-6410x2104
1555 N. 17th Avenue	Office Mgr:	Judy Nero*	970-304-6410x2122
Greeley, CO 80631	Env Hith Prot:	Jeff Stoll	970-304-6410
970-304-6416	Public Health		
	Hith Educ:	Karen Spink	970-304-6410x2350
	Nurs Dir:	Linda Carlson	970-304-5420x2304

20120918 Lot A survey notes

